IDENTIFYING PERFECT SQUARES

(more mathematical cats)

Take the whole numbers and square them:

$$0^{2} = 0$$
 $1^{2} = 1$
 $2^{2} = 4$
 $3^{2} = 9$

and so on.

The resulting numbers $0, 1, 4, 9, 16, 25, 36, \ldots$ are called *perfect squares*.

DEFINITION perfect square

A number p is called a *perfect square* if and only if there exists a whole number n for which $p = n^2$.

In other words:

How do you get to be a perfect square?

Answer: By being equal to the square of some whole number.

(Recall that the *whole numbers* are 0, 1, 2, 3, ...)

In this exercise, you will decide if a given number is a perfect square.

The key is to rename the number (if possible) as a whole number, squared!

You may want to review this section first: Equal or Opposites?

EXAMPLES:

Question: Is 9 a perfect square?

Solution: Yes. $9 = 3^2$

Question: Is 7 a perfect square?

Solution: No. The number 7 can't be written as a whole number, squared.

Question: Is 17^2 a perfect square?

Solution: Yes. The number 17 is a whole number, so 17^2 is a whole number, squared.

Question: Is 17^4 a perfect square?

Solution: Yes. Rename as $(17^2)^2$. The number 17^2 is a whole number, so $(17^2)^2$ is a whole number,

squared.

Question: Is $(-6)^2$ a perfect square?

Solution: Yes. Rename as 6^2 . The number 6 is a whole number, so 6^2 is a whole number, squared.

Question: Is -6^2 a perfect square?

Solution: No. Recall that $-6^2 = (-1)(6^2) = (-1)(36) = -36$. A perfect square can't be negative.

Be careful!

The numbers -6^2 and $(-6)^2$ represent different orders of operation, and are different numbers!

Question: Is $(-7)^{12}$ a perfect square?

Solution: Yes. Rename: $(-7)^{12} = 7^{12} = (7^6)^2$. The number 7^6 is a whole number, so $(7^6)^2$ is a whole number, squared.

Question: Is -4 a perfect square?

Solution: No. A perfect square can't be negative.